
LLM-grounded Diffusion: Enhancing Prompt Understanding of
Text-to-Image Diffusion Models with Large Language Models

Long Lian1 Boyi Li1 Adam Yala1,2 Trevor Darrell1
1UC Berkeley 2UCSF

Abstract

Recent advancements in text-to-image gener-
ation with diffusion models have yielded re-
markable results synthesizing highly realistic
and diverse images. However, these models
still encounter difficulties when generating im-
ages from prompts that demand spatial or com-
mon sense reasoning. We propose to equip
diffusion models with enhanced reasoning ca-
pabilities by using off-the-shelf pretrained large
language models (LLMs) in a novel two-stage
generation process. First, we adapt an LLM
to be a text-guided layout generator through
in-context learning. When provided with an
image prompt, an LLM outputs a scene layout
in the form of bounding boxes along with corre-
sponding individual descriptions. Second, we
steer a diffusion model with a novel controller
to generate images conditioned on the layout.
Both stages utilize frozen pretrained models
without any LLM or diffusion model parameter
optimization. We validate the superiority of
our design by demonstrating its ability to out-
perform the base diffusion model in accurately
generating images according to prompts that
necessitate both language and spatial reason-
ing. Additionally, our method naturally allows
dialog-based scene specification and is able to
handle prompts in a language that is not well-
supported by the underlying diffusion model.

1 Introduction

The field of text-to-image generation has witnessed
notable advancements, especially with the adop-
tion of diffusion models. These models have show-
cased remarkable capabilities in generating highly
realistic and diverse images in response to textual
prompts. However, despite their impressive capa-
bilities, diffusion models, such as Stable Diffusion
(Rombach et al., 2022), often struggle to accurately
follow the prompts when spatial or common sense
reasoning is required. Fig. 1 lists four scenarios
in which Stable Diffusion falls short in generat-

Stable Diffusion LMD (Ours)

Attribute Assignment

Negation

Numeracy

Spatial Relationships

… a wooden table 
without bananas

… 3 cats on  
the grass

… a man in red 
standing next to 
another woman  

in blue

… 3 apples arranged 
in an L-shape  

on a wooden table

Figure 1: Our method enhances the prompt understand-
ing ability of text-to-image diffusion models (Rombach
et al., 2022).

ing images that accurately correspond to the given
prompts.

One possible solution to address this issue is of
course to gather a vast multi-modal dataset com-
prising intricate captions and train a new diffusion
model. This approach comes with significant costs:
It is time-consuming and expensive to train both
large language models (LLMs) and diffusion mod-
els. To efficiently solve this problem with minimal
cost, we instead equip diffusion models with en-
hanced spatial and common sense reasoning by
using pretrained LLMs in a novel two-stage gener-
ation process.

In the first stage of our method, we adapt an
LLM to be a text-guided layout generator through
in-context learning. Given an image prompt, this
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A realistic image of a 
vintage car on the road, 
place the vintage car on 

the left of the image

Add a racing car to the 
right of the image

Dialog-based Scene 
Specification

Stable DiffusionLMD (Ours)

LMD (Ours)

⼀个室内场景的⽔彩画，⼀个桌
⼦上⾯放着⼀盘⽔果


(Translation: A watercolor 
painting of an indoor 
scene with a plate of 

fruits placed on a table.)*

Generation from 
Non-English Prompts

* The translation is not part of 
the input to our method.

LMD (Ours)

Figure 2: Incorporating an LLM for prompt understanding, our method is naturally able to perform dialog-based
scene specification and generation from prompts in a language (Chinese in the example above) that the underlying
diffusion model does not support.

LLM outputs scene layouts in the form of captioned
bounding boxes as well as a background prompt.

In the second stage, we propose a novel layout-
conditioned image generation method, which gen-
erates images by conditioning on the layout gen-
erated in the first step. In contrast to the previ-
ous region control method (Bar-Tal et al., 2023)
which steers a diffusion model towards semantics
in certain regions, we enable precise control over
object instances in designated regions. Our layout-
conditioned image generator uses a frozen diffusion
model (e.g., Stable Diffusion) under the hood and
does not involve parameter gradient computation.

Notably, both stages utilize frozen pretrained
models, making our method applicable to off-the-
shelf LLMs and diffusion models without any LLM
or diffusion model parameter optimization.

In addition to enhanced prompt understanding,
our incorporation of LLMs also allows dialog-
based multi-round scene specification and image
generation from prompts in a language that the
diffusion model does not support (Fig. 2).

Our overall approach, dubbed LLM-grounded
Diffusion (LMD), can generate high-quality im-
ages from prompts that require complex spatial and
common sense reasoning. We demonstrate that
a diffusion model, augmented with an LLM us-
ing LMD, outperforms its base diffusion model
in terms of several tasks that require reasoning to
follow the prompts.

In this work, we make three main contributions:

1. We adapt large language models for enhanced
prompt understanding of diffusion models.

We introduce a novel two-stage text-to-image
generation process LMD that consists of text-
to-layout generation and subsequent layout-
to-image generation.

2. We propose a novel training-free image gen-
eration method that steers a diffusion model
to generate images conditioned on bounding
box layouts.

3. We provide evidence that by enhancing diffu-
sion models with LLMs, our method not only
enables image generation from prompts that
demand advanced reasoning capabilities but
also allows dialog-based scene specification
and multilingual text-to-image generation.

2 Related Work

Diffusion Models for Image Generation. Dif-
fusion models are a class of powerful generative
models that learn the data distribution of complex
datasets. During the forward process, noise is
added to an image to the input data x0 for T steps,
until the resulting vector xT is almost distributed
according to a standard Gaussian distribution. A
neural network learns to predict the added noise
that can be subtracted from a standard Gaussian
distribution during inference. DDPM (Ho et al.,
2020) shows high-quality image synthesis results
using diffusion probabilistic models. DDIM (Song
et al., 2020) proposes a sampling strategy that al-
lows image generation from fewer denoising steps
as well as a way to invert the denoised sample x0
to xT in a special case of the sampling strategy.

2



LLM 

Layout Generator

A realistic photo of a gray cat 
and an orange dog on the grass

A realistic photo of a grassy outdoor scene

a gray cat an orange dog

grass

Layout-guided 
Stable Diffusion

Stage 1 Stage 2

Figure 3: We propose LMD, a text-to-image generative model with a novel two-stage generation process: 1) An
LLM layout generator first takes an image prompt and outputs an image layout in the form of bounding boxes with
individual descriptions. 2) A novel layout-guided stable diffusion generates the image conditioned on the layout.
Both stages use frozen pretrained models, which makes our method applicable to off-the-shelf LLMs and other
diffusion models.

Classifier-free guidance (Ho and Salimans, 2022)
allows conditioning the diffusion model without an
externally-trained classification model. Latent dif-
fusion and stable diffusion (Rombach et al., 2022)
propose to denoise in the latent space, allowing
high-quality generation in high resolution. We re-
fer readers to the appendix for a preliminary intro-
duction to diffusion models.

Reasoning from Large language models. The in-
clusion of grounding information in large language
models (Li et al., 2022) frequently enhances their
reasoning capabilities and is proved advantageous
across various applications. Chain-of-thought (Wei
et al., 2022) introduces a simple chain-of-thought
prompting method to enable reasoning abilities to
emerge naturally in large language models, with a
series of intermediate reasoning steps. Not limited
to language-only models, many multimodal mod-
els also benefit from integrating large language
models with visual models for advanced interac-
tive performance. BLIP (Li et al., 2023) proposes
a generic and efficient pretraining strategy that
bootstraps vision-language pre-training from off-
the-shelf frozen pre-trained image encoders and
frozen large language models. Chameleon (Lu
et al., 2023) synthesizes programs to compose var-
ious tools, including LLM models, off-the-shelf
vision models, web search engines, Python func-
tions, and rule-based modules tailored to user in-
terests. Flamingo (Alayrac et al., 2022) is a fam-
ily of Visual Language Models. The results show
that Flamingo can achieve state-of-the-art results
with few-shot learning for many visual reasoning
tasks such as visual question-answering and cap-
tioning tasks. Beyond, Rozanova et al. (2021) finds
that document-based models can learn a reason-
able amount of spatially relevant features that make
them transferable to the UI grounding task. Gha-

nimifard and Dobnik (2019) reveals that the lan-
guage model possesses the capability to differenti-
ate between the functional and geometric biases of
spatial relations through encoding, despite lacking
access to visual features of the scene.

Conditioned Image Generation. Conditioned im-
age generation aims to generate images that fol-
low a specific pattern or instruction. We classify
these methods into visual-guided image generation
and text-to-image generation. On the one hand,
visual-guided image generation creates new con-
tent based on given prior visual knowledge such
as pose, segmentation map or stroke (Vinker et al.,
2022), etc. SPADE (Park et al., 2019) and Blob-
GAN (Epstein et al., 2022) synthesize photorealis-
tic images by a given layout. ControlNet (Zhang
and Agrawala, 2023) is a training-based method
that controls pretrained large diffusion models with
additional dense 2D input conditions. MultiDiffu-
sion (Bar-Tal et al., 2023) allows region control for
semantics in image generation and shares a similar
task formulation with our layout-to-image gener-
ator. However, MultiDiffusion exhibits unsatisfy-
ing control in generating the specified instances,
as multiple regions of similar semantics may be
treated as one instance by the diffusion model. On
the other hand, recently text-to-image generation
has made significant advancements in a short pe-
riod of time. DALL-E (Ramesh et al., 2021), Im-
agen (Saharia et al., 2022), and (Rombach et al.,
2022) enable high-quality image generation with
textual input descriptions, the generated content
tends to exhibit subpar performance when it comes
to many reasoning tasks, including generative nu-
meracy.

Diffusion Model-based Image Editing. Prompt-
to-prompt (Hertz et al., 2022) shows powerful
image editing capabilities of diffusion models
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given a pair of prompt descriptions. Instruct
Pix2Pix (Brooks et al., 2022) distills prompt-to-
prompt to edit the image given a text instruc-
tion. However, the edited instruction cannot guar-
antee the generated accuracy of spatial content.
DiffEdit (Couairon et al., 2022) proposes to use
DDIM inversion for a similar image editing task.
Our text-conditioned layout generator is inspired
by the intuitions for cross-attention maps in (Hertz
et al., 2022) and DDIM inversion in (Couairon
et al., 2022). However, we are working on text-
to-image generation, a task that stands apart as it
solely relies on a single provided textual prompt,
distinguishing it fundamentally from previous im-
age editing literature.

3 LLM-Grounded Diffusion

We present our method LMD in detail in this sec-
tion. LMD focuses on a standard text-to-image
generation setting: given text prompt y, gener-
ate image x0, potentially by denoising from initial
noise xT . Our method generates an image in two
stages: text-to-layout generation (Section 3.1) and
layout-to-image generation (Section 3.2).

3.1 LLM-based Layout Generation
Given a text prompt y, the text-to-layout generator
generates the layout of an image. An image layout
description includes three components: 1) coordi-
nates of the bounding box for each foreground ob-
ject in (x, y, width, height) format, 2) a text prompt
for the content of each bounding box, 3) a text
prompt that describes the background in a simple
and concise fashion that diffusion model’s text en-
coder could easily understand.
Prompting. Our prompt to an LLM includes three
parts:

1. Task specification:
Your task is to generate the bounding boxes
for the objects mentioned in the caption, along
with a background prompt describing the
scene.

2. Supporting details:
The images are of size 512x512... Each bound-
ing box should be in the format of ...

3. Attitude towards guessing:
If needed, you can make reasonable guesses.

In-context learning. We provide the LLM with
manually curated examples after the task descrip-

tion. Through examples, we convey the exact for-
mat of our layout generation (i.e., include the three
components clearly) and provide details of the in-
stance specification.

An example is shown as follows:
Caption: A watercolor painting of two pandas eat-
ing bamboo in a forest
Objects: [(’a panda eating bambooo’, [30, 133,
212, 226]), (’a panda eating bambooo’, [262, 137,
222, 221])]
Background prompt: A watercolor painting of a
forest

We ensure two key points in designing our ex-
amples: We list out one box for each object (e.g.,
if we specify four objects in an example prompt,
we leave four boxes for the object in the example
reference). In addition, we leave no foreground
objects that are already specified in the box to the
background, so that foreground objects are all kept
under the control of our layout-guided image gen-
erator (Section 3.2).

After the prompt and the examples, we ask the
LLM to perform completion1:
Caption: [user’s input image prompt]
Objects: [start of LLM completion]

The LLM is supposed to generate the name of
each instance along with its location and size in
a bounding box format, and then it is expected to
output the background prompt without the specified
foreground instance. We refer the readers to the
appendix for our full prompt.

3.2 Layout-guided Stable Diffusion

We use the layout generated by the LLM to con-
dition the diffusion model for the overall image
generation. Two key steps of our layout-guided
stable diffusion are: 1) generating masked latent
inversion for each box, and 2) composing the latent
inversion as well as generating the corresponding
background.
Per-box masked latent inversion. We process
one foreground box at a time. For each of the
foreground objects, we first generate a single-object
image with customized text conditioning.

We use a composite prompt for generation:
“[background prompt] with [box content]” (e.g., “a
realistic image of an indoor scene with a cat”).

To ensure the object is generated at the ex-
pected location and has roughly the size of the

1We use Chat Completion API to query the LLM for com-
pletion.
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Prompt:

A realistic photo … with a 

gray cat and an orange dog

(a) Step 1: per-box masked latent inversion

Prompt:

A realistic photo … 

with a gray cat

Could not attend to “with a gray cat” 

Text-guided denoising with 
cross-attention masking

Can attend to the whole prompt

Cross-attention map 

of the cat token

DDIM Inversion

Masking

Refine 
with SAM

…

Masked Inverted Latents for Each Box

Box for “a gray cat” Generated Image with 
One Foreground Object

Masked Inverted Latent

Refined Foreground MaskAttention Map

Inverted Latent

(b) Step 2: foreground-aware composed image generation
Random Noise as Initial Background Latent

Compose
Text-guided denoising from 

composed latent

Composed Latent Composed Image

Figure 4: Our novel layout-guided stable diffusion component generates images based on the layout obtained from
an LLM. Our layout-guided image generation process has two steps: masked noise inversion for each box and the
subsequent composed image generation.

box, we independently control the image-to-text
cross-attention maps of the diffusion model for
pixels inside the box and outside the box2. Leav-
ing the image-to-text cross-attention maps intact
for pixels inside the box, we attenuate the cross-
attention from pixels outside the box to the text
tokens “with [box content]” so that the object is
correctly placed.

Then we obtain the cross-attention map that de-
scribes the affinity from each pixel to the text to-
kens that correspond to the “[box content]”, which
presents a rough saliency mask of the object in the
generated image, inspired by (Hertz et al., 2022).
We use segment anything model (SAM) (Kirillov
et al., 2023) to further refine the quality of the mask
by querying from the pixel location with the max
saliency value.

Next, we apply DDIM inversion (Song et al.,
2020) to obtain the latent of the generated single-
object image. Denoising the inverted latent will
reproduce an image that closely resembles the gen-
erated single-object image. We perform element-
wise multiplication to the refined foreground mask
from SAM and the inverted latent, creating a
masked inverted latent that describes the fore-
ground.

2The term pixels refers to latent values as we operate in a
latent space of the diffusion model.

Foreground-aware image generation. To place
all instances into an appropriate background, we
first randomly generate standard Gaussian noise as
the background latent. When de-noised, this back-
ground latent will generate an image that reflects
the textual conditioning.

Then we place foreground masked latents onto
randomly generated latent by simply replacing the
background latent with foreground latent in the
parts indicated by the mask and the box location.
Specifically, we make sure the center of the box
specification aligns with the center of the outer
box of the foreground object mask. This creates a
composed latent for the subsequent generation.

We then generate the output image by denoising
from step T to step 0. To ensure consistency be-
tween the foreground and the background, we first
generate the background with the foreground fixed
and then refine the whole image in a denoising pass,
controlled by a hyperparam r ranging from 0 to 1.

From T to (1− r)T steps, we only allow modi-
fying background from the composed latent. Since
the background part is originally a standard Gaus-
sian, this allows the background to evolve accord-
ing to the textual prompt and the foreground latents,
i.e. be foreground-aware. In these steps, the fore-
ground part of the composed latent is directly taken
from the corresponding step in the latent inversion
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process, inspired by (Couairon et al., 2022). From
rT to 0 steps, we allow modifying the whole image
for more coherent results, as the layout is already
generated, inspired by the bootstrapping technique
in (Bar-Tal et al., 2023). The textual prompt for the
diffusion model is simply “[background prompt]
with [box 1 content], [box 2 content], etc." r indi-
cates how much we allow the foreground to change
to get more coherent results. A large r allows more
coherent results but can deviate from the instance
specification. The final generation is thus expected
to both adhere to the foreground object specifica-
tion and come with a coherent background.

4 Visualizations

We present visualizations of our method along with
the generation of Stable Diffusion 2.1, which is the
base model that we use in the layout-guided image
generation stage. As shown in Fig. 5, our two-stage
text-to-image generation method can follow the
prompts that require language and spatial reasoning
much better than our base model which performs
text-to-image generation in one stage. In addition,
our generated images also closely align with the
layouts generated by our text-to-layout generator,
shown in the middle column of Fig. 5.

In addition to comparing with our base model
Stable Diffusion, we also compare with MultiDif-
fusion (Bar-Tal et al., 2023), a method that allows
image generation conditioned on semantic masks.
Since MultiDiffusion is proposed to leverage masks
as the input in addition to the text prompt, we use
the layout generated in the first step of our method
and convert the labeled boxes into semantic masks
(Fig. 6(b)). We present the first four generated im-
ages from the three methods with no random seed
selection. Stable Diffusion does not adhere to the
number of balls in the prompt (Fig. 6(c)). MultiDif-
fusion generates images with semantics that match
the specifications provided in the layout (Fig. 6(d)).
However, it does not have fine-grained control over
each instance. As shown in Fig. 6(e), our method
correctly generates three plastic balls in three out of
four images, showing better instance-level control
in the generation process.

5 Additional Capabilities of LMD

Using an LLM as a prompt parser that interpreter,
LMD naturally gains capabilities in addition to
enhanced understanding and reasoning in text-to-
image generation. Given an LLM that supports

Benchmarks Accuracy (%)

Negation 100%
Generative Numeracy 93%
Attribute Assignment 100%
Spatial Relationships 98%

Table 1: Our LLM-based layout generator is able to
handle prompts that require several types of reasoning
with high accuracy.

multi-round dialog (e.g., GPT-3.5 or GPT-4), we
can naturally provide additional information or clar-
ification to the LLM by querying the LLM after
the first layout generation in the dialog and gen-
erate images with the updated layout in the sub-
sequent response from the LLM. For example, a
user could request to add an object to the scene
Fig. 2 (left) or change the existing objects in lo-
cation or descriptions. Furthermore, by giving
an example of a non-English prompt with a lay-
out and background description in English during
in-context learning3, LMD accepts inputs of non-
English prompts and will generate layouts, with
descriptions of boxes and the background in En-
glish for subsequent layout-to-image generation.
As shown in Fig. 2 (right), this allows generation
from prompts in a language that the underlying
diffusion models do not support.

6 Evaluating Text-guided Layout
Generation

Setting. We propose an evaluation method of our
approach that four benchmarks: negation, genera-
tive numeracy, attribute assignment, and spatial rea-
soning. Negation and generative numeracy involve
generating a specific number of objects. Attribute
assignment involves assigning the right attribute to
the right object. Spatial reasoning involves under-
standing words that describe the relative locations
of objects. For each prompt type, we compose a
prompt for LLM as input and check whether the
output layout matches the LLM prompt. Specifi-
cally, we pick 10 common object types from the
COCO dataset (Lin et al., 2014)4. We design our
benchmark so that the LLM is queried 100 times in
each benchmark, generating 100 layouts for evalua-
tion. For negation and generative numeracy bench-

3Specifically, we simply translate the prompt of our last
in-context learning example, keeping the layout intact.

4backpack, book, bottle, bowl, car, cat, chair, cup, dog,
and laptop
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A watercolor painting of a 
scene on the moon

A horse

Stable Diffusion LMD (Ours)

A realistic top-down view 
of 6 apples arranged in a 
three by two grid on a 

wooden table

A realistic image of 1+2 
plastic balls in a room

A realistic image of a 
white deer and a gray 

bear in an empty factory 
scene

A watercolor painting of a 
scene on the moon with a 
horse on the top riding a 

astronaut

LMD Generated Layout

A realistic top-down view 
of a wooden table

A realistic image of a 
room

A realistic image of an 
empty factory scene

An astronaut

A white deer
A gray bear

A 
plastic 

ball

A 
plastic 

ball

A 
plastic 

ball

An apple An apple An apple

An apple An apple An apple

Figure 5: Our method outperforms the base text-to-image diffusion model (Rombach et al., 2022) in terms of
correctly following the prompts that require spatial and language reasoning. Best viewed in color and zoom in.

mark, we prompt the LLM to generate a layout of
a scene with some number of a certain object or
without a certain object. Then we count the num-
ber of objects and consider the layout to be correct
if the number of the object of that particular type
matches the one in the prompt, with the number
ranging from 1 to 5. For attribute assignment, we
prompt the LLM to generate a object of a color
and another object of another color, with a simi-
lar type of evaluation. For the spatial relationship
benchmark, we generate an object at a certain lo-
cation and another object at an opposite location
(left/right and top/bottom). We then check the spa-
tial coordinates of the boxes to ensure the layout
exactly matches the prompt. All benchmarks are
evaluated on gpt-3.5-turbo. We refer readers to
the appendix for the prompts in the setting.

Results. Table 1 shows the results of our LLM-
based layout generator which is designed to handle
prompts requiring reasoning. The model was able
to achieve high accuracy in generating the layouts

that match the requirements of the prompts, reach-
ing 100% when it comes to handling negation and
attribute assignment prompts. This demonstrates
the excellent ability of the model in understanding
the absence of an object and assigning attributes to
the correct object. Moreover, the model performed
remarkably well when dealing with generative nu-
meracy prompts, reaching an accuracy of 93% for
ranges 1-5. The failure cases are mostly because
the model outputs a plural form of the object (e.g.,
chairs) as a box rather than individual boxes, which
we expect to be able to fix with better prompting.
With a 98% accuracy on spatial relationship bench-
mark, our model also achieves highly accurate gen-
eration when prompted with keywords that describe
the locations of objects.

7 Limitations

Since we use an off-the-shelf large language model
for text-to-layout generation without any fine-
tuning, the LLM only has limited knowledge of
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(c) Stable Diffusion

(e) LMD (Ours)

A realistic image of 1+2 
plastic balls in a room

(d) LMD Layout + 
MultiDiffusion

(a) Input Prompt

(b) Layout from the First 
Stage of LMD

A realistic 
image of a room

A 
plastic 

ball

A 
plastic 

ball

A 
plastic 

ball

Figure 6: Our layout-guided image generator has better instance-level control compared to MultiDiffusion (Bar-Tal
et al., 2023). While MultiDiffusion only specifies the semantic regions, our layout-guided image generator specifies
one instance at the location of each box. Our method correctly generates exactly one ball for a box in three out of
four attempts.

A watercolor painting of 
two apples on a wooden 
table, neither is red and 

both are green

Stable Diffusion Our Layout Our Generation

A watercolor painting 
of a room

A wooden table

A 
green 
apple

A 
green 
apple

Figure 7: A failure case of our method is generating disproportional objects. Our method sometimes generates
objects that are disproportional to the background due to ambiguity in the layout specification. The layout generated
by our text-to-layout generator is feasible for a close-up image, but the layout-to-image model interprets it as a
scene viewed from far away.

the preferences of the diffusion model from the
provided examples and thus may output a layout
that is hard to generate by the diffusion model. Fur-
thermore, our layout is expressed in the format of
a set of bounding boxes with a background prompt,
which does not explicitly convey the viewpoint in-
formation and may confuse the diffusion model.
For example, the generated layout in Fig. 7 is feasi-
ble for a close-up image, but the diffusion model
generates an image viewing from far away, causing
the objects and background to be disproportionate.
We believe a better format for expressing the layout
and specifically fine-tuning an LLM to perform lay-
out generation from layouts obtained by running
bounding box detectors on images will alleviate
this problem.

Since our layout-guided image generator gener-
ates one instance at a time, there is no coordina-

tion between instances for style coherency except
that the text-to-layout generator will ensure boxes
of similar sizes and coherent placements. This
may cause unintended style variations between in-
stances in one image. Furthermore, partially oc-
cluded instances in the single-instance generation
stage may lead to incomplete foreground objects in
the composed generation.

Our method also inherits other issues, such as
biases in the generation, from Stable Diffusion,
which is also presented in previous works such as
(Luccioni et al., 2023).

8 Summary

We enhance the capabilities of text-to-image dif-
fusion models to understand textual prompts that
require language and spatial reasoning. We propose
a novel two-stage generation process that involves
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text-guided layout generation through in-context
learning and the subsequent layout-to-image gen-
eration. We justify the superiority of our proposed
method by demonstrating its ability to outperform
the base diffusion model in accurate image gen-
eration from prompts that demand language and
spatial reasoning.

A Appendix

A.1 Preliminaries on diffusion models
Diffusion models are a class of powerful genera-
tive models that learn the data distribution of com-
plex datasets. During the forward process, noise is
added to an image to the input data x0 for T steps,
until the resulting vector xT is almost distributed
according to a standard Gaussian distribution. In
the reverse process, a diffusion model iteratively
subtracts a predicted noise vector from xT to trans-
form it into a sample that resembles the real data in
the training dataset. The reverse process is often re-
ferred to as “denoising”. We refer readers to (Luo,
2022) for a more in-depth introduction to diffusion
models.
DDPM. (Ho et al., 2020). The denoising process
of denoising diffusion probabilistic models starts
with the initial noise vector sampled from a stan-
dard Gaussian noise vector xT ∼ N (0, I). During
training, a neural network with parameter θ learns
to predict the added noise for the forward process
by minimizing the training objective:

L = ||ϵ− ϵθ(xt,t)||
2 (1)

At inference time, for each of the T denoising
steps, DDPM predicts the noise ϵ and then obtains
xt−1 from xt:

xt−1 =
1

√
αt

(
xt−

1− αt√
1−

∏t
i=1 αi

ϵθ(xt, t)
)
+σtz

(2)
where z ∼ N (0, I), αt and σt are parameterized by
a variance schedule {βt ∈ (0, 1)}Tt=1 that controls
the size of the denoising step.
DDIM (Song et al., 2020). Denoising diffusion im-
plicit models are a generalization to DDPM which
allows sampling with fewer iterations. DDIM ap-
plies the following update rule:

xt−1 =
√
αt−1

(xt −
√
1− αtϵθ(xt, t)√

αt

)
+ σtϵt

(3)
Note that DDIM shares the same training procedure
with DDIM, which means we can take a model
trained with DDPM objective and perform faster
sampling using DDIM. When σt is set to 0, which
is the case for our setting, the denoising becomes
deterministic given xT . Assuming each step only
performs small changes to xt, DDIM sampling can
also be conducted in the reverse order, as proposed
in (Song et al., 2020; Dhariwal and Nichol, 2021)
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to obtain a vector x′T from x0 so that x′T , when
de-noised, gives back x′0 that is close to x0. The
process of inverting the x0 to get x′T is called DDIM
inversion (Mokady et al., 2022).
Latent Diffusion and Stable Diffusion (Rombach
et al., 2022). While DDIM and DDPM are denois-
ing images from raw pixel space, latent diffusion
proposes to denoise in the latent space for high-
quality generation in high resolution. Specifically,
before the denoising process, the image is encoded
by an encoder, and a decoder decodes the generated
x0 in the latent space to an output image.

Latent diffusion also proposes a conditioning
scheme that allows generating samples with other
modalities (e.g., text) as the condition. The con-
dition is realized through cross-attention layers
(Vaswani et al., 2017) that attend from latent lo-
cations in U-Net (Ronneberger et al., 2015) feature
maps to the encoded condition (e.g., text features
from a CLIP text encoder).

Stable diffusion models are large text-to-image
models trained on large multi-modal datasets using
the techniques proposed for latent diffusion.

A.2 Prompts for Evaluating Text-guided
Layout Generation

For the negation benchmark, we use the prompt A
realistic photo of a scene without [object name].

For generative numeracy, we use the prompt A
realistic photo of a scene with [number] [object
name].

For attribute assignment, we use the prompt A
realistic photo of a scene with [modifier 1] [object
name 1] and [modifier 2] [object name2], where
the two modifiers are randomly chosen from col-
ors (red, orange, yellow, green, blue, purple, pink,
brown, black, white, gray).

For the spatial relationship benchmark, we use
the prompt A realistic photo of a scene with [object
name 1] on the [location] and [modifier 2] [ob-
ject name2] on the [opposite location], where the
location is chosen from left, right, top, and bottom.

A.3 Our full prompt
Our full prompt is listed in Table 2.
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1 You are an intelligent bounding box generator. I will provide you with a caption
for a photo , image , or painting. Your task is to generate the bounding boxes
for the objects mentioned in the caption , along with a background prompt
describing the scene. The images are of size 512x512 , and the bounding boxes
should not overlap or go beyond the image boundaries. Each bounding box should
be in the format of (object name , [top -left x coordinate , top -left y
coordinate , box width , box height ]) and include exactly one object. Do not put
objects that are already provided in the bounding boxes into the background
prompt. If needed , you can make reasonable guesses. Please refer to the example
below for the desired format.

2

3 Caption: A realistic image of four skiers standing in a line on the snow near a
palm tree

4 Objects: [('a skier ', [5, 152, 139, 168]), ('a skier ', [278, 192, 121, 158]), ('a
skier ', [148, 173, 124, 155]), ('a palm tree ', [404, 180, 103, 180])]

5 Background prompt: A realistic image of an outdoor scene with snow
6

7 [Additional Examples]
8

9 Caption: [User Prompt]
10 Objects:

Table 2: Our full prompt to the LLM for layout generation. LLM starts completion from “Objects:.”
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