arXiv:2303.04496v1 [cs.CL] 8 Mar 2023

MenuCraft: Interactive Menu System Design with Large Language Models

Amir Hossein Kargaran“ Nafiseh Nikeghbal . Abbas Heydarnoori d Hinrich Schiitze™

* Center for Information and Language Processing, LMU Munich

%% Sharif University of Technology J Bowling Green State University

amir@cis.lmu.de

Abstract

Menu system design is a challenging task in-
volving many design options and various hu-
man factors. For example, one crucial fac-
tor that designers need to consider is the se-
mantic and systematic relation of menu com-
mands. However, capturing these relations
can be challenging due to limited available re-
sources. With the advancement of neural lan-
guage models, large language models can uti-
lize their vast pre-existing knowledge in de-
signing and refining menu systems.

In this paper, we propose MenuCraft, an Al-
assisted designer for menu design that enables
collaboration between the designer and a di-
alogue system to design menus. MenuCraft
offers an interactive language-based menu de-
sign tool that simplifies the menu design pro-
cess and enables easy customization of design
options. MenuCraft supports a variety of inter-
actions through dialog that allows performing
few-shot learning.

1 Introduction

Menus are widely used interfaces, providing users
with an intuitive and efficient access to an applica-
tion’s functions. Although menus may seem sim-
ple at first glance, creating a well-designed menu
system is complex. This is because the number
of alternative designs grows exponentially as the
number of commands increases. By disregarding
non-textual design factors such as size, saliency,
and color, we can focus solely on the textual rep-
resentation of menu systems. In this regard, the
position of commands in the menu and the assign-
ment of hotkeys are the two most critical factors in
designing a menu system. Menus typically follow
a consistent linear pattern, where command names
are displayed on the left, and keyboard shortcut
cues are aligned on the right (Giannisakis et al.,
2022).

Since 1980, Human-Computer Interaction (HCI)
researchers have been developing better tech-

niques for placing commands within the menu sys-
tem. Their ultimate goal is to minimize selection
time (Ahlstrom, 2005; Bailly et al., 2016; Card
et al., 1980) while maximizing the associativity
among commands (Bailly et al., 2013; Dayama
et al., 2021). In order to reach these goals, the
setup of parameter-based models needs to possess
complete information regarding the frequency of
command usage and the relation among commands
(e.g., pairwise semantic relevance scores (Bailly
et al., 2014; Chen et al., 2015)). The designer typ-
ically provides the parameters for menu system
design. This means that designers must rely on
user testing and past experience by comparing com-
mands with each other to determine the parameters.
However, as the number of commands increases,
this process can become increasingly challenging,
time-consuming, and prone to inaccuracy. Fur-
thermore, designers strive to maintain consistency
across menus within a given ecosystem. This in-
volves placing commands similarly across menus
to help users quickly locate the desired command.
The downside is this process of ensuring consis-
tency can be time-consuming and distract designers
from their primary goal of optimizing the menu.

Prior researches have investigated using data-
driven methods such as pre-trained static embed-
dings (Adar et al., 2014; Li et al., 2018) to cap-
ture the semantics of menu commands. However,
these embeddings are typically trained on generic
datasets such as Wikipedia or limited program-
specific data. Consequently, these embeddings may
not effectively capture the systemic or semantic
relationships specific to the domain of menu sys-
tems, resulting in limited applicability. Despite the
advancements in neural language models, menu de-
sign using data-driven methods has not kept pace.
There are two main reasons for this: (i) the cost of
providing datasets for menu design is expensive,

and (ii)) menu design is an interactive process that
requires input, feedback, and adjustments from the

designer. Parameter-based models give designers
a sense of control over the output, and their pre-
dictability allows for a clearer understanding of
how different inputs will impact the final design.
Therefore, parameter-based methods are more pre-
ferred over data-driven methods in menu design.

Recent advancements in pre-trained large lan-
guage models (LLMs), such as GPT-3 (Brown et al.,
2020) and PaLLM (Chowdhery et al., 2022), have
shown emergent abilities (Wei et al., 2022a) to
adapt to a range of different tasks with just a few
examples of the target task. The in-depth knowl-
edge of these models presents an exciting opportu-
nity to facilitate the menu design process without
requiring training or specific datasets. The conver-
sational nature of open-domain dialogue systems
built on top of these models also can serve to fulfill
the interactive demands of design.

In this work, we present MENUCRAFT, an Al as-
sistant that incorporates an open-domain dialogue
language model to design menus. MenuCraft uti-
lizes the effectiveness of data-driven methods while
maintaining interactive design procedures. With
MenuCraft, designers can easily create menus, re-
ceive suggestions from the assistant, and ask for ad-
justments to enhance their menu design. For an as-
sistant to be useful in menu system design, it needs
to be versatile enough to handle a variety of tasks,
ranging from the simple, like adding a command
to a menu tab, to complex ones, such as suggesting
alternative designs, grouping commands, and ap-
plying restrictions to the menu, tabs, or individual
commands. To avoid the cost of collecting data
and training multiple models for different tasks, we
propose using few-shot learning methods. Our tool
facilitates various menu design tasks, including
topic and command-based menu design, and pro-
vides recommendations for commands and hotkeys.
Furthermore, our tool enables designers to easily
create custom tasks, providing them with the flex-
ibility to tailor the system to their specific needs.
From an HCI viewpoint, we intend to utilize Menu-
Craft to study how designers engage with language
models, the types of tasks they request, and the
efficacy of the models in fulfilling those requests.
In summary, our contributions are the following:

(1) We present a platform for collaborative menu
design between a human designer and a large
language model.

(2) We illustrate how few-shot learning can offer a
range of interactive menu design experiences,

all without requiring additional model training.

The rest of the paper is organized as follows:
Section 2, introduces the related works. Section 3
and 4, describes MenuCraft and what interactions
it supports. Lastly, we give our final remarks and
discuss our future work in Section 5.

2 Related Work

2.1 Bridging Menus and Natural Language

Menu systems can be categorized as a user inter-
face (UI) type. In this sense, significant research
in this area has been aimed at bridging graphical
Uls (GUlIs) with natural language. For instance,
some studies have focused on predicting alt-text
labels for GUI components (Li et al., 2020; Zhang
et al., 2021) or generating text summaries for the
entire screen (Leiva et al., 2022; Wang et al., 2021).
However, these approaches may not be well-suited
for menu systems due to the limitation of capturing
the entire menu in a single Ul screenshot. Addition-
ally, these researches have been focused on con-
necting the graphical aspects of the Ul to natural
language, not addressing the structural characteris-
tics of menus or their textual representations.

Despite the potential benefits of bridging menu
systems and natural language, there has been lim-
ited research in this area. One possible explana-
tion for this is the lack of comprehensive textual
datasets for menu systems since most data about
different menu system applications are dispersed
across the internet or embedded within software
applications. In an attempt to gather a dataset for
menu systems, Bailly and Malacria (2013) has suc-
ceeded in building a menu-logger tool to extract
the hierarchies of the menu system for Mac OS
X applications. Bailly et al. (2013) provide an
open dataset of 68 applications gathered with this
tool to compute associativity score between the
commands. Nevertheless, this data only contains
limited data on menu system hierarchies for Mac
OS X applications and no descriptions or informa-
tion about commands. In another attempt, Adar
et al. (2014) train a word2vec model to capture the
domain-specific language of Photoshop application
by mining a large corpus of web documents related
to the application. However, the static representa-
tions derived from the trained model are limited to
a specific application domain.

There is a noticeable gap in research on integrat-
ing menu systems with natural language processing.

Our work contributes to this gap by leveraging the
few-shot learning capability of LLMs to apply their
extensive knowledge to various menu design tasks.
Our method does not need additional datasets or
training.

2.2 Interactive Application of Large
Language Models

Language models, especially LLMs, have the po-
tential to be effectively used for few-shot learn-
ing. LLMs facilitate in-context few-shot learning
through prompting. Rather than finetune or re-
train models for each new task, a few input and
output data examples from the target task can be
provided as prompts to the LLM (Brown et al.,
2020; Chowdhery et al., 2022; Wei et al., 2022b;
Zhou et al., 2022). This advantage enables these
models to not require explicit training and can
support a variety of creative tasks, especially in
HCI research (Morris et al., 2022), such as story
writing (Chung et al., 2022; Coenen et al., 2021;
Yuan et al., 2022), modifying web designs (Kim
et al., 2022), conversational interactions on mobile
Uls (Wang et al., 2022), email writing (Goodman
et al., 2022) and executing robot commands (Ahn
et al., 2022). To the best of our knowledge, no one
has yet attempted to use language models for menu
design. Our platform proposes using language mod-
els in dialogue, which leverage pre-existing knowl-
edge and interactive design process .

3 The MenuCraft

MenuCraft is an interactive assistant tool designed
to assist designers in creating menu designs from
scratch, offering alternative designs, command and
hotkey suggestions, and more. The user-friendly
web interface of MenuCraft is designed as a tradi-
tional chatbot, enabling users to engage with the
tool seamlessly. Additionally, MenuCraft provides
a variety of default supported interactions that can
be conveniently inserted into the chat feed as tem-
plates. Users can easily modify the prompts to suit
their queries, allowing for a customized experience
catering to individual needs.

MenuCraft’s remarkable capabilities result from
using open-ended dialog systems built on large lan-
guage models. The dialog system we use is Chat-
GPT (OpenAl, 2022), AKA GPT-3.5-turbo, a lan-
guage model capable of following instructions and
answering questions posed in a conversational for-
mat. ChatGPT trained using Reinforcement Learn-

ing from Human Feedback (RLHF), using the same
methods as InstructGPT (Ouyang et al., 2022), but
with slight differences in the data collection setup.

3.1 Initialize

ChatGPT is designed to take as input the previous
turns in a conversation and utilize them to generate
a prediction for the subsequent turn. For Menu-
Craft, the few-shot learning examples are formu-
lated as a conversation between a human designer
and an Al assistant. In our initial tests, we found
it very convenient to construct few-shot learning
contexts for the dialog model since humans are
familiar with the conversational format and can
quickly adapt to it.

To set the initial prompt, we determined the pri-
mary goals of MenuCraft. As previously stated, the
objective of optimizing the arrangement of com-
mands is to improve selection time and enhance
the associativity among the commands. Usually,
frequently used commands are prioritized to re-
duce selection time by placing them at the top of
the menu based on Fitts’ Law (Ahlstrom, 2005;
Bailly et al., 2013; Cockburn et al., 2007). This
approach minimizes the time required for users to
access commonly used commands. To maximize
associativity, commands with related operations
are grouped and placed within the same tab and
near each other (Bailly et al., 2013). This meets
the user’s expectation of finding related menu com-
mands in familiar locations due to spatial mem-
ory (Cockburn et al., 2007). For instance, it is
intuitive that users expect to see commands such as
Cut, Copy, and Paste to be grouped or About and
Help commands to be located within the last tab.
With these objectives in mind, we formulated our
initial prompt as follows:

Initial Prompt

I want you to act as an AI-Assisted Menu
Designer, called MenuCraft. You will come
up with design ideas for menu user inter-
faces that make apps easier to use. You
may suggest menu design apps for a topic,
arrange commands as linear or hierarchal
menus, group the commands as tabs, sug-
gest command names, add or suggest hot keys
for the commands, and so on - but the aim
is to design a menu that users find sat-
isfying to use, meaning select good names
for commands, prioritize frequently used
commands for each tab of menu as the top,
and put commands with close logical opera-
tions in the same tab. If you understand the
your responsibilities, introduce yourself
in short and asks for the user request.

MenuCraft responds with:

MenuCraft

I am MenuCraft, an AI-Assisted Menu De-
signer designed to help create intuitive
and user-friendly menu interfaces for var-
ious types of applications. I can suggest
menu design ideas, arrange commands in
linear or hierarchical menus, group com-—
mands as tabs, suggest command names, and
hotkeys, and more to make the app easier
to use. What would you like me to help you
with?

Now that initialization has been completed, design
requests can be submitted.

4 Supported Interactions

In this section, we describe a number of the inter-
actions that MenuCraft can perform.

4.1 Topic-Based Design

Topic-based design is one of the most general tasks
that a designer can ask MenuCraft to perform.
MenuCraft can assist in the creation of a menu for
a specific topic by suggesting relevant commands
based on similar apps and user input constraints.
For example, when MenuCraft is prompted with:

Human Designer

Create a menu for a text editor applica-
tion with 3 tabs. There should be a "Find~
command in the "Edit™ tab in the app. Tabs
should not have more than 6 commands each.

Please answer in the following format:
" json

Tab: list of commands

MenuCraft responds with:

MenuCraft: Topic-Based Design
Certainly! Here's a menu design for a text
editor application with 3 tabs, including
the "Find® command in the "Edit” tab, and no
more than 6 commands per tab:

{"File":
["New", "Open", "Save", "Save As...",
"Print", "Exit"],
"Edit":
[" Undo n , "Redo n , " cut n , "Copy" ,
"Paste", "Find"],
"Format":
["Font", "Bold", "Italic", "Underline",

"Strikethrough", "Highlight"]}

This response completely fulfilled the request
and met the conditions. The designer can
continue the interactions for the new requests or

modifying the suggested menu. For example, de-
signer can request the Format tab be deleted, and in
its place the View tab and any commands required
be added:

Human Designer

Remove the "Format®™ tab from the current de-—
sign and replace it with a “View™ tab with
the commands that are needed.

MenuCraft responds with the same menu, replacing
the Format Tab with View Tab. The replaced tab
(other tabs were not shown for better readability):

MenuCraft: Modify Design

"View":
["Zoom In", "Zoom Out", "Full Screen",
"Show/Hide Ruler",
"Show/Hide Gridlines,
"Show/Hide Document OQutline"]

The View tab has been successfully added with
relevant commands, such as Zoom In and Zoom
Out.

4.2 Command-Based Design

Command-based design is the primary focus within
the menu design community. In this scenario, the
designer provides a set of commands and their cor-
responding parameters, including the frequency of
usage for each command and the association score
between each pair of commands. Given the param-
eters, the designer then requests a menu optimizer
to provide an optimal or sub-optimal design. As
the number of commands increases, optimization
methods may take hours or even days to find an op-
timal solution. Conversely, while language model
approaches may not yield the optimal answer, they
can likely provide an appropriate one within sec-
onds. Furthermore, unlike optimization methods,
language models do not require access to the entire
set of parameters but welcome any input from the
designer. For example, when MenuCraft prompted
with random order of 5 tabs and 29 commands
of Windows Notepad application, without saying
these commands belong to this application:

Human Designer

Design a menu for a text editor app only
based on the provided commands and tabs.
Each tab should have the most frequently
used commands as its top, and commands with
close logical operations should be grouped
together as tabs. To show some of the com-—
mands in a tab are more related, you may use
some subgroups for each tab.

Commands provided (unordered) :

["View Help™, “About Application”, “Paste”,
“Save As™, “Open”, ...]

Tabs provided (unordered) :

["Format™, “File", “View™, “Help~, "Edit"]
Please answer in the following format:

" Json

Tab: list of commands

MenuCraft responds with:

MenuCraft: Command-Based Desgin

Here's a suggested menu design for a text
editor app based on the provided commands
and tabs:

{File:
["New", "New Window", "Open",
"Save", "Save As", "Page Setup", "Print",
"EXit"],
Edit:
["UI’IdO", "Cut", "COpy", "Paste",
"Delete", {"Find": ["Find...",
"Find Next", "Find Previous",
"Replace..."]}, "Select All",
"Time/Date"],
Format:
["Word Wrap", "Font..."],
View:
[{"Zoom": ["Zoom In", "Zoom Out",
"Restore Default Zoom"]}, "Status Bar"],
Help:
["View Help", "Search With Bing",
"Send Feedback",
{"About": ["About Application"]}]}
In this menu design, the commands are

arranged in hierarchical order with fre-
quently used commands appearing at the top
of each tab. The File tab includes essen-—
tial file-related actions such as creat-
ing, opening, saving, and printing files.
The Edit tab includes common text-editing
actions such as undo, copy, paste, and
find/replace. The Format tab includes op-
tions for formatting text, including word
wrap and font selection. The View tab in-
cludes commands for adjusting the zoom
level and displaying the status bar. The
Help tab includes options for getting help,
searching for information, and providing

feedback. |)
I hope this menu design meets your needs

and provides a user—-friendly interface for
your text editor app!

This design has a lot in common with the original
Windows Notepad design. The commands’ order
and grouping are the same except for a few com-
mands. For example, Search With Bing is now
located under the Help tab, which may not be a bad
idea. In the following, MenuCraft explains why it
chose this particular design. The designer can al-
ways ask for the reasoning behind the design or ask
the MenuCraft to think step-by-step and explain
why it is taking each action.

4.3 Command or Tab Recommendation

MenuCraft can provide valuable suggestions for
related commands or tabs for a particular design.
This can save designers time and effort while also
improving the overall user experience of the design.
For example, asking MenuCraft about related com-
mands under a tab and why these commands were
chosen:

Human Designer

My app menu design already includes “Book-—
mark this Tab®™ under the “Bookmarks™ tab.
What other commands should I include under
this tab?

Please anser in the following format

" json

command name: reason

MenuCraft responds with:

— MenuCraft: Command Recommendation —

Certainly, here are some additional com-
mands that could be included under the
"Bookmarks" tab with a brief reason for
each:

{

"Bookmark All Tabs": "Enables users to
save bookmarks for all currently open tabs
in a single action.",

"Organize Bookmarks": "Opens a bookmark
manager or dialog that allows users to sort,
categorize, and manage their saved book-
marks.",

"Edit Bookmark": "Lets users modify the
properties of an existing bookmark, such as
the title, URL, or tags.",

"Remove Bookmark": "Deletes a selected
bookmark from the user's list of saved book—
marks.",

"Import Bookmarks": "Allows users to im-—
port bookmarks from a different browser or
bookmarking service.",

"Export Bookmarks": "Enables users to ex—
port their bookmarks to a file or other ex-
ternal location.",

"Bookmarks Sidebar": "Toggles the display
of a sidebar or panel that shows the user's
saved bookmarks.",

"Recently Bookmarked": "Displays a list
of recently bookmarked pages or URLs for
quick access."

}

We found the response quite good. In many cases,
these commands already exist in popular browsers.
They allow users to manage and organize their
bookmarks more effectively.

4.4 Command or Tab Name
Recommendation

MenuCraft can help designers generate appropriate
names for commands based on their descriptions

or suggest names for tabs based on the set of com-
mands they contain. For example, asking Menu-
Craft about a menu tab name based on two known
commands inside it:

Human Designer

There 1is a nameless tab on my menu de-
sign that includes commands such as "Min-
imize" and "Zoom". Please suggest top best
10 names for this tab.

MenuCraft responds with:

_ MenuCraft: Tab Name Recommendation —

Sure! Here are ten potential names for the
tab that includes commands like "Minimize"
and "Zoom":

Window, Display, View, Layout, Screen,
Desktop, Workspace, Monitor,
Size & Position, Display Options

These names are intended to convey the idea
of adjusting the window or interface in var-
ious ways, such as changing the size, po-
sition, or arrangement of elements on the
screen. Hopefully, one of these names fits
well with the intended purpose of the tab
and helps users easily locate the relevant
commands .

There are several good suggestions for the desired
tab name in the response. For instance, one can find
both Minimize and Zoom commands in the Window
Tab (MenuCraft’s first choice) of Chrome browser
on MAC OS X.

4.5 Hotkey Recommendation

Hotkeys, also known as keyboard shortcuts, are
a combination of keys on a computer keyboard
that provide a quick way to access various menu
commands. The selection of well-thought-out
hotkeys can speed up access to frequently used
commands. MenuCraft simplifies this process by
creating hotkeys based on menu design, reducing
the time and effort required. Hotkeys must be dis-
tinct from other commands in the app. For example,
continuing the first design of the text editor in sec-
tion 4.1, by requesting to add shortcuts:
Human Designer

Add shortcut for each command, two differet
commands must not have the same shortcut.

MenuCraft responds with:

— MenuCraft: Hotkey Recommendation

Certainly! Here's the updated menu design
for a text editor application with 3 tabs,
including the Find command in the Edit tab,
no more than 6 commands per tab, and key-—
board shortcuts for each command:

{"File": [
{"name": "New", "shortcut": "Ctrl+N"},
{"name": "Open", "shortcut": "Ctrl+O"},
{"name": "Save", "shortcut": "Ctrl+3S"},
{"name": "Save As...",
"shortcut": "Ctrl+Shift+sS"},
{"name": "Print", "shortcut": "Ctrl+pP"},
{"name": "Exit", "shortcut": "Alt+F4"}
1,
"Edit": [
{"name": "Undo", "shortcut": "Ctrl+z"},
{"name": "Redo", "shortcut": "Ctrl+y"},
{"name": "Cut", "shortcut": "Ctrl+X"},
{"name": "Copy", "shortcut": "Ctrl+C"},
{"name": "Paste", "shortcut": "Ctrl+v"},
{"name": "Find", "shortcut": "Ctrl+F"}
1,
"Format": [
{"name": "Font",
"shortcut": "Ctrl+Shift+F"},
{"name": "Bold", "shortcut": "Ctrl+B"},
{"name": "Italic", "shortcut": "Ctrl+I"},
{"name": "Underline",
"shortcut": "Ctrl+U"},
{"name": "Strikethrough",
"shortcut": "Ctrl+Shift+sS"},
{"name": "Highlight",
"shortcut": "Ctrl+H"}

1}

I've added keyboard shortcuts for each
command to make it quicker and easier
for users to access frequently used com-
mands. The shortcuts are listed next to
each command in the format of Ctrl+Key or
Ctrl+Shift+Key.

Most of the selected shortcuts are commonly used
by other applications, such as Ctrl + Z for the
Undo command. The rest is made up of the Crrl
key and the first letter of the command. To prevent
shortcut reuse, the Ctrl + Shift combination is used.
Nevertheless, an error occurred when assigning the
shortcut for the third time to a command that starts
with the letter S (Strikethrough). MenuCraft can
be instructed about what other templates it can use
to create shortcuts to prevent this from happening.
However, the designer can also inform MenuCraft
of its mistake through more interaction :

Human Designer

The same shortcut must not Dbe shared
by two commands, even in different tabs.
“Strikethrough®™ and “Save As... share a
same shortcut.

MenuCraft replies with a thank you for clarifying
and corrects its mistake by replacing the shortcut
for Strikethrough command (other tabs were not
shown for better readability):

MenuCraft: Hotkey Modification

Thank you for the clarification Here's an
updated menu design ensuring that no two
commands share the same shortcut even in
different tabs:

{"name": "Strikethrough",
"shortcut": "Ctrl+Shift+D"},

I changed the shortcut for Strikethrough
to Ctrl+Shift+D to ensure that it does not
share the same shortcut as Save As.... This
will help users avoid confusion and make it
faster to perform specific tasks with the
text editor.

In the revised response, it was suggested to use an-
other shortcut (Ctrl+Shift+ D) for the Strikethrough
command. This suggestion is acceptable since pop-
ular applications such as Microsoft Excel also use
the same shortcut.

4.6 Command Elaboration

MenuCraft can provide additional information
about specific commands in a menu. It can explain
the meaning of a command or provide examples
of how it could be used in context. This feature
can assist in verifying whether an intelligence un-
derstands the functionality of a command based
on its name in a given context. Additionally, it
can generate documentation for the designed menu.
For example, continuing the first design of the text
editor in section 4.1 by requesting an elaboration
on designed menu commands:

Human Designer

Provide a short elaboration on the designed
menu commands for the text editor. The for-
mat should be as follows:

tab name, command: short elaboration

MenuCraft responds with:

MenuCraft: Command Elaboration

File Tab:

— New File: creates a new blank document

— Open File: opens an existing file for edit-
ing

— Save: saves the current document

— Save As: allows the user to save the docu-
ment under a different name or file type

- Print: prints the current document

— Exit: closes the application

Edit Tab:

— Undo: reverses the last action performed

— Cut: removes the selected text and copies
it to the clipboard

— Copy: copies the selected text to the clip-
board

— Paste: inserts the contents of the clip-
board at the current cursor position

- Find: searches for a specific word or
phrase in the document

— Replace: allows the user to replace a spe-—
cific word or phrase with another

Format Tab:

— Font: allows the user to change the font,
size, and style of the selected text

— Bold: makes the selected text bold

- TItalic: makes the selected text itali-
cized

— Underline: adds an underline to the se-
lected text

- Strikethrough: adds a strikethrough to
the selected text

— Highlight: highlights the selected text

with a color

Each command has been explained in a fair and
reasonable manner.

5 Conclusion and Future Work

MenuCraft represents a promising new direction in
menu design through language models. Our initial
experiments have shown that MenuCraft can per-
form various menu design tasks quite well. How-
ever, MenuCraft is still in the prototype phase and
needs much more to explore. Moving forward, our
future work with MenuCraft will focus on conduct-
ing additional user studies to gain further insights
into the needs and preferences of menu designers.
This will allow us to tailor MenuCraft to meet the
specific requirements of different users and con-
texts. Furthermore, we will explore how the data
collected from MenuCraft and designer feedback
can be leveraged for better prompt engineering.
Overall, we are excited about the potential of Menu-
Craft and look forward to continuing our work in
this area. This new direction has the potential to
revolutionize menu design and improve the user
experience across a wide range of applications.

Discussion. There is a discussion in the design
community about rethinking the way Al supports
designers (De Peuter et al., 2021). Their view is
that Al should prioritize cooperation over automa-
tion and seek to enhance the creativity and problem-
solving abilities of designers. The challenge is that
design is an optimization problem, but integrat-
ing a human decision-maker into an optimization

process is hard due to the differences in the way
humans and optimizers think and work. Our view
is that MenuCraft has already close to achieving
this objective for two reasons:

(1) As ChatGPT is trained on a large corpus of
data, and human feedback is also used in the
training, we expect ChatGPT to develop a good
understanding of the behavior of human de-
signers.

(2) Humans are intuitively familiar with conversa-
tional formats, and ChatGPT is capable of fol-
lowing instructions posed in a conversational
format.

Limitations. Language models offer a promising
new direction for menu design, but it is essential to
acknowledge their limitations. Language models
may lack domain-specific knowledge for menu de-
sign, and their performance is heavily influenced by
the quality and diversity of the training data used.
Moreover, Language models may struggle with
understanding mathematical concepts, particularly
when designers input specific parameters for design
features. This limitation could result in poor design
recommendations. Furthermore, MenuCraft has
demonstrated acceptable results with ChatGPT, but
extending these results to other LLMs is currently
limited by the lack of experiments with multiple
models.

References

Eytan Adar, Mira Dontcheva, and Gierad Laput. 2014.
Commandspace: modeling the relationships be-
tween tasks, descriptions and features. In Proceed-
ings of the 27th annual ACM symposium on User
interface software and technology, pages 167-176.

David Ahlstrom. 2005. Modeling and improving selec-
tion in cascading pull-down menus using fitts’ law,
the steering law and force fields. In Proceedings of
the SIGCHI conference on Human factors in com-
puting systems, pages 61-70.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex
Herzog, et al. 2022. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv
preprint arXiv:2204.01691.

Gilles Bailly, Eric Lecolinet, and Laurence Nigay.
2016. Visual menu techniques. ACM Computing
Surveys (CSUR), 49(4):1-41.

Gilles Bailly and Sylvain Malacria. 2013. Menuin-
spector: Outil pour 1’analyse des menus et cas

d’étude. In Proceedings of the 25th Conference on
I’Interaction Homme-Machine, pages 103—106.

Gilles Bailly, Antti Oulasvirta, Duncan P Brumby, and
Andrew Howes. 2014. Model of visual search and
selection time in linear menus. In Proceedings of
the sigchi conference on human factors in computing
systems, pages 3865-3874.

Gilles Bailly, Antti Oulasvirta, Timo Ké6tzing, and Sab-
rina Hoppe. 2013. Menuoptimizer: Interactive op-
timization of menu systems. In Proceedings of the
26th annual ACM symposium on User interface soft-
ware and technology, pages 331-342.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Stuart K Card, Thomas P Moran, and Allen Newell.
1980. The keystroke-level model for user perfor-
mance time with interactive systems. Communica-
tions of the ACM, 23(7):396-410.

Xiuli Chen, Gilles Bailly, Duncan P Brumby, Antti
QOulasvirta, and Andrew Howes. 2015. The emer-
gence of interactive behavior: A model of rational
menu search. In Proceedings of the 33rd annual
ACM conference on human factors in computing sys-

tems, pages 4217-4226.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

John Joon Young Chung, Wooseok Kim, Kang Min
Yoo, Hwaran Lee, Eytan Adar, and Minsuk Chang.
2022. Talebrush: sketching stories with generative
pretrained language models. In Proceedings of the
2022 CHI Conference on Human Factors in Comput-
ing Systems, pages 1-19.

Andy Cockburn, Carl Gutwin, and Saul Greenberg.
2007. A predictive model of menu performance. In
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 627-636.

Andy Coenen, Luke Davis, Daphne Ippolito, Emily
Reif, and Ann Yuan. 2021. Wordcraft: a human-ai
collaborative editor for story writing. arXiv preprint
arXiv:2107.07430.

Niraj Ramesh Dayama, Morteza Shiripour, Antti
Oulasvirta, Evgeny Ivanko, and Andreas Karren-
bauer. 2021. Foraging-based optimization of menu
systems. International Journal of Human-Computer
Studies, 151:102624.

Sebastiaan De Peuter, Antti Oulasvirta, and Samuel
Kaski. 2021. Toward ai assistants that let designers
design. arXiv preprint arXiv:2107.13074.

Emmanouil Giannisakis, Evanthia Dimara, Annabelle
Goujon, and Gilles Bailly. 2022. Revisiting menu
design through the lens of implicit statistical learn-
ing. In Proceedings of the 2022 International Con-
ference on Advanced Visual Interfaces, pages 1-9.

Steven M Goodman, Erin Buehler, Patrick Clary, Andy
Coenen, Aaron Donsbach, Tiffanie N Horne, Michal
Lahav, Robert MacDonald, Rain Breaw Michaels,
Ajit Narayanan, et al. 2022. Lampost: Design and
evaluation of an ai-assisted email writing prototype
for adults with dyslexia. In Proceedings of the
24th International ACM SIGACCESS Conference on
Computers and Accessibility, pages 1-18.

Tae Soo Kim, DaEun Choi, Yoonseo Choi, and Juho
Kim. 2022. Stylette: Styling the web with natural
language. In Proceedings of the 2022 CHI Con-
ference on Human Factors in Computing Systems,
pages 1-17.

Luis A Leiva, Asutosh Hota, and Antti Oulasvirta.
2022. Describing ui screenshots in natural language.
ACM Transactions on Intelligent Systems and Tech-
nology, 14(1):1-28.

Yang Li, Samy Bengio, and Gilles Bailly. 2018. Pre-
dicting human performance in vertical menu selec-
tion using deep learning. In Proceedings of the 2018
CHI Conference on Human Factors in Computing
Systems, pages 1-7.

Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li,
and Zhiwei Guan. 2020. Widget captioning: Gener-
ating natural language description for mobile user in-
terface elements. arXiv preprint arXiv:2010.04295.

Meredith Ringel Morris, Carrie Jun Cai, Jess Scon Hol-
brook, Chinmay Kulkarni, and Michael Terry. 2022.
The design space of generative models.

OpenAl. 2022. Introducing chatgpt, 13.02.2023v.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow in-
structions with human feedback. arXiv preprint
arXiv:2203.02155.

Bryan Wang, Gang Li, and Yang Li. 2022. Enabling
conversational interaction with mobile ui using large
language models. arXiv preprint arXiv:2209.08655.

Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen, Tovi
Grossman, and Yang Li. 2021. Screen2words: Au-
tomatic mobile ui summarization with multimodal
learning. In The 34th Annual ACM Symposium on
User Interface Software and Technology, pages 498—
510.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022a. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022b.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Ann Yuan, Andy Coenen, Emily Reif, and Daphne Ip-
polito. 2022. Wordcraft: story writing with large
language models. In 27th International Conference
on Intelligent User Interfaces, pages 841-852.

Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin,
Samuel White, Kyle Murray, Lisa Yu, Qi Shan, Jef-
frey Nichols, Jason Wu, Chris Fleizach, et al. 2021.
Screen recognition: Creating accessibility metadata
for mobile applications from pixels. In Proceedings
of the 2021 CHI Conference on Human Factors in
Computing Systems, pages 1-15.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

A Prototype Demonstration

Here is a simple example of a designer in-
teracting with the prototype version of Menu-
Craft: https://kargaranamir.github.
io/MenuCraft/

https://kargaranamir.github.io/MenuCraft/
https://kargaranamir.github.io/MenuCraft/

